If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-80x-408=0
a = 2; b = -80; c = -408;
Δ = b2-4ac
Δ = -802-4·2·(-408)
Δ = 9664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9664}=\sqrt{64*151}=\sqrt{64}*\sqrt{151}=8\sqrt{151}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{151}}{2*2}=\frac{80-8\sqrt{151}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{151}}{2*2}=\frac{80+8\sqrt{151}}{4} $
| 2(5a-1)-9a=7-2 | | 2x=3*(X-15) | | 2x^2-80x-408=0/ | | -9+4u+2-3u=14 | | y^2=2y+99 | | 4(y+1)+5=6(y-1)+7 | | 3(x+4-6x=2(4-2x) | | 5(x-2)=115 | | 9+4x=-3x-5 | | 2/4w=9 | | 0.5a+0.9(18-a)=12.2 | | 7/9x*9/7=14*9/7 | | 5(t+3)+9=(t-2)+^ | | 7/9x(9/7)=14(9/7) | | -1(x-8)=-13 | | X=9/10-5x | | 3/2x2.2=2(0.7x-1) | | 8-n+5=5n-13 | | w/4.58=1.5 | | 2/3x-4=2/3x+8 | | 24=8u-4u | | 0.2(2x+1/2)=5(0.5+(-2) | | 4+n-9=-9+1+2n=12 | | w+8w=63 | | −15=−4m+5 | | 150=30+15x | | 3(x+4)=72/12 | | 3x-60=31-4x | | 1/2x-18=12 | | 40(0.5)+0.1x=(40+x)(0.4) | | 15/x=12,000 | | (5/x)-(1/3)=2/7 |